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Random Boolean networks have been used as simple models of gene regulatory networks,
enabling the study of the dynamic behavior of complex biological systems. However, an-
alytical treatment has been difficult because of the structural heterogeneity and the vast
state space of these networks. Here we used mean field approximations to analyze the
dynamics of a class of Boolean networks in which nodes have random degree (connec-
tivity) distributions, characterized by the mean degree k and variance D. To achieve
this we generalized the simple cellular automata rule 126 and used it as the Boolean
function for all nodes. The equation for the evolution of the density of the network state
is presented as a one-dimensional map for various input degree distributions, with k
and D as the control parameters. The mean field dynamics is compared with the data
obtained from the simulations of the Boolean network. Bifurcation diagrams and Lya-
punov exponents for different parameter values were computed for the map, showing
period doubling route to chaos with increasing k. Onset of chaos was delayed (occurred
at higher k) with the increase in variance D of the connectivity. Thus, the network tends
to be less chaotic when the heterogeneity, as measured by the variance of connectivity,
was higher.

Keywords: Boolean network; cellular automata; chaos; Lyapunov exponent; mean field
theory.

PACS Nos.: 82.40.Bj, 02.50.-r, 05.45.Pq, 05.50.4+q, 87.10.+€.

1. Introduction

Understanding the complexity exhibited by biological systems is one of the chal-
lenges of “post-genomic” era. Complex behaviors do not require complicated
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systems, as amply demonstrated in computational model systems of life, such as
cellular automata or discrete networks.! A system composed of elements whose in-
dividual behaviors are constrained by simple rules that determine how these compo-
nent parts influence each other, and thus establish a network, is a paradigm of such
model systems. In this regard, Boolean networks, originally inspired by gene regu-
latory networks, provide a convenient and tangible approach to study complexity
at the system-level dynamics of a multi-component system.

Random Boolean networks (RBN) were first introduced as a simplified model
for large genomic networks by Kauffman.?3 In RBN, a set of N nodes are randomly
linked via Boolean functions, which determine the (binary) activity state value of a
node. A large series of studies have demonstrated its utility as a model for complex
bio-systems.®® Specifically, one interesting finding is that under certain circum-
stances the complexity of the network architecture afforded by the large number
N of interacting elements collapses to generate simple, ordered and stable behavior
in high-dimensional state space. Kauffman proposed that this principle underlies
the spontaneous generation of order in complex (irregularly wired) networks, re-
sulting in just a few stable states (relative to the fast number of combinatorially
possible states of the network). This led to the central hypothesis that these stable,
high-dimensional attractor states represent the observable cell types in the body.?
Recently, using DNA microarrays for the simultaneous measurement of dynamics of
the activity state of thousands of genes, experimental evidence has been obtained
supporting this hypothesis.®

Conversely, random Boolean networks (RBN) and other discrete models can
also serve to study how simple systems generate complex, behavior. RBN can be
viewed as generalizations of cellular automata (CA) which were originally intro-
duced by von Neumann in the 1940’s and were extensively studied in the 1980’s by
Wolfram.™7 They exhibit astonishing complex dynamics despite their simple sys-
tem architecture. CAs are dynamical systems composed of cells (automata) which
are arranged on a finite dimensional lattice and which can assume discrete (binary)
state values, e.g., “ON” and “OFF” (“1” or “0”), that are updated in discrete space
and time. The updating of the state value of a cell follows rules which depend upon
the current states of the automata in a specified neighborhood. In one-dimensional
automata with binary states and one neighbor on each side, 256 rules are possible.
These basic CA rules were classified based on the dynamical behavior that they
exhibit.” Boolean networks represent a general case of CA in that the interaction
between the cells (nodes) is not limited to the spatial neighbors. A set of CA rules
that is symmetric with respect to and independent of the neighborhood, such as
rule 126 (see below) can be easily applied to Boolean networks and are scalable
in cases of non-uniform number of inputs (varying size of neighborhoods) without
explicit specification.

Most works on RBN have been motivated by the question of how and when
they generate ordered, rather than complex (chaotic) dynamics.®® Moreover, past
studies often use the simplification of a uniform number of inputs (k) throughout
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the network. However, in biological networks, k is not fixed, but exhibit a broad
distribution (which more specifically, have been proposed to follow a power-law
distribution).? Thus, we set out to study how chaotic dynamics of RBN is influenced
by non-fixed k.

Here we are interested in a Boolean network model with a generalization of the
basic CA rule 126 as per Wolfram’s notation.” By fixing the rule over all network
nodes as a trade-off for varying k, we achieve some homogeneity that facilitate
analysis. The rule 126 states that a given cell goes to the “OFF” (=“0") state
if the cells in its neighborhood (including itself) are all either “ON” or “OFF”.
Thus, extreme homogeneity of states of a neighborhood kills a cell. Rule 126 can
be considered as a simple growth rule. Explicitly, in this CA, if the states are
either “000” or “111” the new state of the central cell will be “0” and for all
other configurations, namely “001”, “010”, “011”, “100”, “101”, and “110”, the
new state will be “1”. This rule is one of the 32 legal rules. Legal rules are the rules
with reflection symmetry, and with the state “000” always giving a “0” output
state. According to Wolfram’s classification scheme, rule 126 is a chaotic rule, since
it produces complex patterns and shows sensitivity to initial conditions. However,
this chaotic behavior is not apparent when system behavior is monitored with
the macroscopic variable ¢(t), or density. This aggregate quantity is the average
number of “1”s of the system in a given state. In the case of rule 126, the density
approaches a constant value for the simple case of one-dimensional CA with two
neighbors.

In networks, such as biochemical or gene regulatory networks, interactions take
place not only between the nearest neighbor cells (genes) on an array but also
between distant ones, since there is no notion of an array. Thus, to incorporate
non-local interactions, we move from the CA to the RBN formalism where there is
no spatial order relationship between the cells (= nodes). Then the neighborhood
of a node is expanded from the two nearest neighbors to any number of nodes in
the network with which that node is connected, and rule 126 can be generalized
as follows. The future state (at time ¢ + 1) is “1” in all these cases except when
the current states (at time ¢) of all neighbors, i.e., direct interaction partners, are
either “0” or “1”7; otherwise the future state will be “0”. Rule 126 is a totalistic rule
because it depends only on the total number of “1”s (or equivalently “0”s) among
the neighbors, and hence can be easily scaled with varying numbers of inputs k
(“neighborhood size”).

When the neighborhood has a regular structure, as in the case of CA, the dy-
namics of ¢(t) shows either a fixed point behavior or utmost a two period behavior,
even for higher number of neighbors.!?!'! However, if one includes nonlocal in-
teractions, as in the case of a Boolean network, then many interesting dynamics
can occur for a system that uses rule 126. In this paper we consider a semilocal
generalization of the neighborhood as the neighborhood includes the cell to be up-
dated itself.!’ However, the results are qualitatively the same for strictly non-local
or semi-local neighborhood (where cells to be updated are excluded or included,
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respectively). The structure of all the networks considered here are based on di-
rected graphs.

The mean field theory of CAs in general have been described in detail by
Gutowitz et al.'? and the collective behavior of CA have been studied by Chate
and Manneville using mean field approaches.'® Chaotic behavior in the temporal
evolution of the density ¢(t) described by the mean field approximations of various
CA rules has been studied by several authors.!3® Mean field theory describes the
whole system behavior in terms of one macroscopic variable, such as the density,
¢(t). Hence one can conveniently study chaos of the system by analyzing the den-
sity, ¢(t), instead of numerically evaluating chaos using microscopic variables, as in
the case of the Derrida plot'® that has become standard in the study of large RBN.
The Boolean system with rule 126 studied in this paper is chaotic and the time
evolution of its density is also chaotic. We are specifically interested in rule 126
because it is one of the legal rules which can be generalized to higher numbers of
neighbors. Moreover, this rule is a simple model of interacting populations of nodes
with heterogeneity in the number of interaction partners of each cell. Andrecut and
Ali'" have provided a mean field equation for the evolution of the time evolution of
¢ of random Boolean networks with rule 126, for the case in which the number of
inputs to a node is a constant, k. Matache and Heidel'® have studied the case with
different ratios of neighborhood sizes. A case where the updating is asynchronous
was analyzed in Ref. 19. Here we study the system with random distributions of
input degree (connectivity), i.e., k is not fixed across the N nodes of the network,
but has a normal or Gaussian distribution. Accordingly, the two control parame-
ters of interest are the mean of the input degree, k, and the variance D for the
distribution of k across the population of the N nodes. The order parameter of
interest which characterizes chaotic behavior at the system level is the density ¢(¢).
A mean field equation for the time evolution of the density, as a function of D
and k is given which is a generalization of the case studied in Ref. 17. Bifurcation
diagrams and Lyapunov exponents are computed for this Boolean network model
and its dynamics is compared with the data obtained from the simulations.

2. Boolean Network Model and the Mean Field Theory

Consider N interconnected cells (nodes) and let cell ¢ has k; neighbors. Implement-
ing rule 126, the state of cell ¢ at time ¢ + 1, s;(t + 1) is given by

0, if Zsj(t) mod k; =0
si(t+1) = €V ; (1)
1, otherwise

where V; is the neighborhood of the cell 7. All cells are updated synchronously. The
density c(t) = 1/N 21111 si(t) is the average of all s;(t), where i = 1,2,..., N and
represents the fraction of the cells which are in state “1” at time t. The neighbor-
hood Vj is defined by the network topology. The connections are determined before
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the simulation and held fixed throughout the temporal evolution, i.e., the network
structure is fixed for a particular simulation of the system. In other words, we are
considering a quenched and not an annealed random Boolean network model in
which the wiring diagram during the time evolution is changed.

2.1. Network construction

Most studies of RBN assume a constant number of inputs for all the nodes, i.e., the
neighborhood size is the same for all the cells.»?1%17 This assumption of homoge-
neous k reduces complications in the analysis of the network behavior. In such a
model each site has & number of neighbors, randomly picked from all the others. In
all subsequent discussions, k; of a node 7 includes the connection to the node itself,
i.e., we deal with semi-local connectivity. In the broader context of variable k;, a
random network with homogeneous k£ can be said to have a distribution of input
connectivity that is a delta function at k. The output connectivity is a Poissonian
distribution for large N in such networks.

To construct networks with degree distributions that are not a delta function
but exhibit a distribution with a specified mean degree k and variance D, we created
a random list of IV normally distributed integers with mean k£ and variance D, and
assigned each of them randomly to the nodes and randomly connected the nodes ¢
with other nodes of the network k;, which provides node ¢ with k; inputs. Multiple
links between the two nodes are not allowed, while a link to a node itself is always
made (semi-local property). We are considering only the semi-local case here. There
is no significant difference in the system dynamics studied here when compared to
the fully non-local case. For variance D = 0, this construction is equivalent to the
random network with constant input connectivity (delta function distribution).

We also considered a version of the classic Erdés-Renyi (ER) random networks.?’
Here connections are introduced between all possible pairs of nodes with a specified
probability so that the total number of links is Nk. Again, multiple links are not
allowed and a link to a node itself is included. The input degree distribution for such
a network approaches, like that for the output degree, a Poissonian as the system
size N becomes large. The mean degree is k and the variance is also k for such a
network.

2.2. Mean Field Approximation

Various collective phenomena and mean field theory of such cases for CA have been
presented in Refs. 10 and 12. For a Boolean network with the rule 126 that has
constant input connectivity, k, the evolution equation for the mean field is given
by:17

ct+1)=1—ct)* — (1 —c(t)*. (2)

Here the density of the system at time (¢ + 1), ¢(t + 1), is given in terms of the
density ¢(t) at time ¢t. The quantity ¢(¢) represents the probability that a cell is in
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state 1 at time ¢ when N — oco. This has been generalized by Matache and Heidel'®
for different sizes of neighborhood. When there are M; cells with k; inputs, the
equation for the probability that a cell is in state 1 at time ¢ 4 1 is given by

M;

e(t+1) =3 S0 - (0et) " — (L - ()1 -V @3)

Mk
2

Jj=1

where J is the number of distinct neighborhood sizes and ¢;(¢) is the probability
that a cell with k; inputs is in state 1, among M; cells.

When the input connectivity is not a constant we can write the mean field
equation by expanding Eq. (2) about the mean and neglecting higher order terms.
Thus, one can write the ¢(¢ + 1) for a Boolean network with random connectivity
distribution as

elt +1) = 1= e(t)* — (1 — e(t)* — 2 [(loge(t))Pe(t)*
T (log(1 — e(t))2(1 - e(t)"]., (4)

where D is the variance of the distribution of input degree across the nodes and k
is its mean. Equation (4) can be obtained using Eq. (3) as well, by approximating
the sum over a random distribution and neglecting higher order terms. We denote
the right-hand side of Eq. (4) as the function F'(¢). Then the one-dimensional map
of the system is given by,

c(t+1)=F(c(t)), (5)

which has only one maximum in the range ¢ € (0, 1), and is bounded between 0 and
1. Since we assume in this model that the variance D of the degree distribution is
small and finite so that we can neglect higher order terms, Eq. (4) is not a suitable
approximation for networks with unbounded degree distributions such as scale free
distributions. Note also that when D is very large compared to k, it is not well
defined in the range (0, 1).

We now compare the prediction by the mean field model with the simulations
of the dynamics of RBNs for different values of the mean input connectivity & and
variance D. Representative plots of first and second return maps are presented in
Figs. 1-3, for the mean connectivity k = 7. Similar results were obtained for other
values of k and D. In Fig. 1(a) the function F' and in Fig. 1(b) its second iterate,
F(F), are plotted as a function of ¢(t), for the case D = 0. The calculated density
of the network ¢(t 4+ 1) at time ¢ + 1 and ¢(t + 2) at time ¢ 4 2 as a function of the
density ¢(t) at time ¢, in Figs. 1(a) and 1(b), respectively, are superimposed. Figure 2
shows the results for the case D = 1. In Fig. 3 the same plots are presented for the
map with D = k, i.e., for a Boolean network with ER random graph structure. As
evident from the plot of the map functions in Figs. 1-3, the map is a one-humped
map, mapping the open unit interval (0,1) — (0,1). For D = 0, it reproduces the
results of Ref. 17.
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c(t+1)

c(t+2)

% 0.2 0.4 06 08 1
c(t)
(b)

Fig. 1. Simulation of the Boolean Network and the mean field model. (a) first return map and
(b) second return map, for k = 7 and D = 0. Dots represent results from the Boolean network
simulations and the solid line using the function F' of the mean field model.

Simulations for systems with different values of IV gave similar results; the shown
results are for NV = 2000. Overall, there was a good agreement between the map
model and the simulation results although for individual iterations, the mean field
theory and simulations do not match exactly. This is not surprising since the mean
field model is valid for a large ensemble of networks with N — oc.
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c(t+1)

c(t+2)

0.4 06 08 1
c(t)

(b)

Fig. 2. Same as in Fig. 1, for k=7 and D = 1.

3. Analysis of the Map Model

To study the asymptotic stable dynamics of the map (5) we plotted bifurcation
diagrams for ¢(t) with k as the control parameter and also calculated the Lyapunov
exponent (LE). The LE quantifies the sensitive dependence on initial conditions.
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c(t+1)

c(t+2)

0 0.2 0.4 06 08 1

Fig. 3. Same as in Fig. 1, for k = 7 and D = k. Here Boolean network is with an Erdos Renyi
random graph structure.

It represents the average rate of the exponential divergence of nearby trajectories.
If the LE is positive (the largest LE for higher dimensional systems) the system is
chaotic. Calculation of LE, denoted here as A, can be done by averaging log |0F/d¢|
over several iterations for several different initial conditions:
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T
Z tog |20 (6)

where T is the total number of iterations.?!

The bifurcation diagrams with &k as the bifurcation parameter (Figs. 4(a)-
6(a)) were created by plotting a few final iterates of the map after discard-
ing transients, for each set of parameter values k and D. Figure 4(a) shows
the bifurcation diagram for D = 0. As the mean connectivity k increases,
the map dynamics goes from a single fixed point behavior to a two-periodic
behavior. Further increase results in another period doubling to a period-4,
and so on. Unlike in the case of CA, with RBN when k reaches a critical
value k*, the network exhibits chaotic behavior with respect to ¢(t). The sys-
tem shows a period doubling route to chaos. The corresponding Lyapunov ex-
ponents as a function of k are shown in Fig. 4(b). For k* =~ 4.595, LE be-
comes positive indicating that the map is chaotic with this value of k, in agree-
ment with the bifurcation diagram in Fig. 4(a). Several windows of periodic
behaviors are present in the bifurcation diagram after the onset of chaos as
k increases, and accordingly, at these values of k, the LE is less than zero
(Fig. 4(b)).

For the relevant ranges of parameters this is a unimodal map in the unit interval,
and hence, it shows all the universality properties of such maps which are well

0 5 10 15 20 25

Fig. 4. (a) Bifurcation diagram and (b) Lyapunov exponents, A, of the mean field model, for
D = 0 and k£ = 2 to 25. For bifurcation diagrams we plot the 500 final iterates of the map, for
each value of k. and for LE we take the average over 10000 iterations and many random initial
conditions.
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0 5 10 15 20 25

Fig. 5. (a) Bifurcation diagram and (b) Lyapunov exponents of the mean field model, for D =1
and k = 2 to 25.

0 5 10 15 20 25

Fig. 6. (a) Bifurcation diagram and (b) Lyapunov exponents of the mean field model, for D = k
and k = 2 to 25.

studied.?? Although one could increase the value of k indefinitely, due to finite
precision of computers, not much relevant information can be extracted for larger
k since the dynamics will appear as invariant under further change of k.
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Fig. 7. Lyapunov exponent, X, of the model in the (k, D) plane. Color represents the value of A
as denoted in the color bar.

Figure 5 shows the bifurcation diagram (Fig. 5(a)) of the system (5) for D = 1,
with the corresponding LE plot (Fig. 5(b)), for k = 2 to 25. The result indicates
that as D increases, the onset of chaos is delayed with respect to the value k.
In this case, the chaotic regime begins at k* ~ 5.075. Thus, one may argue that
heterogeneity in network topology tend to maintain order in the system. Figure 6
presents similar plots as Figs. 4 and 5, but for K = D. The latter case corresponds
to a distribution where the mean and variance are the same, such as in a Poisson
distribution, and represents the Erdos-Renyi random graph. Simulation of the ER
network also shows a good agreement with theory. For this case the chaos onset
occurs when k* =~ 6.45.

To illustrate the dependence of chaos onset on the two control parameters, Fig. 7,
shows a plot of A, in the (k, D) space. This figure clearly indicates that chaos onset
occurs for higher value of k£ as we increase D. This is directly evident in Fig. 8,
where k¥, is plotted as a function of D.

4. Conclusion

In this paper we presented a mean field approximation for the time evolution of the
density, a macroscopic variable used to characterize system behavior of a network.
We focus on the case of a random Boolean network with uniform functions, rule
126, but with varying input degrees which exhibit distributions with a specified
mean and variance. Mean field equation agreed well with the simulation results
of the model. The evolution of the mean field shows a period doubling route to
chaos, as demonstrated in the bifurcation analysis and by calculating the Lyapunov
exponents.
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0 2 4 6 8 10

Fig. 8. Critical value k*, at which the onset of chaos occurs as a function of the variance D.

These results suggest that even simple networks can produce chaotic behav-
ior. Specifically, in the case of random networks with a simple rule for interac-
tions the increasing average input degree of a node can lead to chaotic behavior.
But the results also indicate that the extent of inhomogeneity with respect to in-
put degree k, as reflected in the variance D, suppresses the onset of chaos. In
other words, inhomogeneous connectivity may dampen the chaotic behavior of the
Boolean network.

The model system used here was originally motivated by previous results on
RBN with uniform input connectivity. The order parameter of the system, density
c(t) is an aggregate quantity of the network states, and the Boolean function of
nodes were uniform across the network, namely obeying rule 126. This model offers
some general insights for how a class of relatively simple systems can generate com-
plex behavior. The density ¢(t) may represent a global gene expression activity of a
cell across the entire transcriptome of thousands of individual genes. These results
suggest that such global activities may not “average out” even if it is contributed
by thousands of genes. In fact, for instance, the cellular redox state has been shown
to exhibit periodic fluctuations although it is contributed by genome-scale number
of genes.?? It will be interesting to also look at other generalizable CA rules with
complex behavior, such as rule 22, in the context of RBN. Restricting the analysis
to uniform rules enabled us to differentiate between complex behavior arising from
the interaction structure (network topology) from that due to randomness in the
choice of rules used as in conventional RBN.3:8:24

Our result suggests that — given the limitation due to the Boolean function used
— not simply the average connectivity of each gene but also the heterogeneity of
input numbers among the genes, captured in the variance D, is a relevant parameter
that influences global dynamics. This heterogeneity, which is ubiquitous in biological
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systems, may help suppress chaotic behavior. This would be consistent with the idea
that biological networks operate in the ‘ordered regime’ (near the phase transition to
chaos) which in turn provides high-dimensional stability to transcriptomes that may
encode stable cell phenotypes. However, in molecular networks this heterogeneity
is manifested in the form of scale-free topology.” Also, most of the real networks
show small-world property.?®> Thus, it is important to note that the mean field
theory presented here is not adequate to describe scale free networks, because of
the unbounded variance of degree distributions in such networks. However, our
studies provide an indication that such systems may in general be less chaotic.
Aldana and Kluzel® recently demonstrated that scale-free networks with random
Boolean functions are less chaotic and that the transition to chaos occurs below
the power law exponent, v = 2.5. Future studies on the role of degree heterogeneity
needs to be extended on scale free networks, small-world networks and other random
networks with various topological features.
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