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Abstract—Rheological properties of living cells play a key role
in the control of cell shape, growth, movement, and contractility,
yet little is known about how these properties are governed. Past
approaches to understanding cell mechanics focused on the contri-
butions of membranes, the viscous cytoplasm, and the individual
filamentous biopolymers that are found within the cytoskeleton.
In contrast, recent work has revealed that the dynamic mechani-
cal behavior of cells depends on generic system properties, rather
than on a single molecular property of the cell. In this paper, we
show that a mathematical model of cell mechanics that depicts
the intracellular cytoskeleton as a tensegrity structure composed
of a prestressed network of interconnected microfilaments, mi-
crotubules, and intermediate filaments, and that has previously
explained static cellular properties, also can predict fundamental
dynamic behaviors of living cells.
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GLOSSARY

c= damping coefficient
l = length of a tendon (m)
l0 = resting length of a tendon (m)
ṙn = velocity of the center of mass of thenth rigid

body/point mass (m/s)
q = vector (24× 1) of generalized coordinates
q0 = vector (24× 1) of generalized coordinates at the

reference solution
q̄ = perturbations vector (24× 1) of independent general-

ized coordinates
z1 = output perturbation
A(q) = equilibrium matrix (24× 33)
C(q) = damping matrix (24× 24)
D0 = output matrix (1× 24)
EA= stiffness of a tendon (N)
F = vector (N × 1) of external forces and torques
F1 = input to the system
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Fn= resultant force acting on thenth rigid body/point mass
(N)

F̄ = vector (N × 1) of perturbations in the external forces
and torques

G′ = elastic modulus (Pa)
G′′ = frictional modulus (Pa)
H(q) = disturbance matrix (24× N)
J(ω, P) = transfer function
L = length of a strut (m)
C0,K0,H0= damping, stiffness, and disturbance matrices,

respectively, evaluated atq0

Mn = resultant moment acting on thenth rigid body (Nm)
N = number of external forces and torques applied to the

structure
P = prestress (Pa)
Qj = the j th nonconservative generalized force
T = force in a tendon (N)
T(q) = vector (33× 1) of tensions in the working tendons
V = potential energy of the structure (J)
Xi ,Yi , Zi = inertial Cartesian coordinates of the center of

mass of struti (m)
X,Y, Z = inertial Cartesian coordinates of the point mass

(m)
Z1 = output of the system
αi j = azimuth angle of strutij (◦)
δi j = declination angle of strutij (◦)
ω = frequency (Hz)
Ωn = angular velocity of thenth rigid body (◦/s)

INTRODUCTION

In standardad hocrheological models of the cell, the
elastic and frictional stresses are assumed to originate from
two distinct compartments—the elastic cortical membrane
and the viscous cytoplasm.40,12 More recent work suggests
that cell rheological behavior reflects a generic property of
the cell at some higher system level of molecular organiza-
tion and interaction.11 At the same time, it is well known that
molecular filaments which comprise the intracellular solid
state network known as the cytoskeleton (CSK), including
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microfilaments, microtubules, and intermediate filaments,
play a central role in cell shape stability.7−10,16,18,24,30,34,36

Thus, to advance our understanding of the molecular and
biophysical basis of cell rheology, we must develop a theo-
retical model of the cell that both effectively predicts com-
plex mechanical behaviors and provides a mechanism to
link these behaviors to the molecular elements that com-
prise the CSK.

Tensegrity architecture provides a potential microstruc-
tural mechanism to explain the mechanical behavior of the
cell.16,17,29 The cellular tensegrity model assumes that con-
tractile microfilaments and intermediate filaments carry a
stabilizing tensile stress (“prestress”) within the CSK that
is balanced by internal microtubules and by extracellular
adhesions. Thus, this model differs from continuum mod-
els of the cell in that it proposes a critical stabilizing role
for CSK prestress in cell mechanics, and it predicts that
specific molecular elements within the CSK elements will
bear either tension or compression.

Mathematical formulations of tensegrity models, start-
ing from first principles, have shown qualitative and quanti-
tative consistencies with static experimental results in vari-
ous cell types.5,6,27−29,31,37,39 For example, in living airway
smooth muscle cells stiffness increases nearly in proportion
as the level of CSK contractile stress is raised,36 a feature
which is consistent witha priori predictions of the tenseg-
rity model. It also has been shown that microtubules bear
significant compressive forces in living cells,30,36 much like
the struts in tensegrity structures.5,6,32

One limitation of past work in this area is that all the
above consistencies between tensegrity and the behaviors
of living cells only reflect their static elastic properties. In
contrast, numerous studies show that cell rheological be-
havior is viscoelastic.2,9−11,13,22,25,26,30,33,35,40 The standard
approach in modeling cell viscoelasticity is essentially phe-
nomenological. For example, linear lumped spring-dashpot
analogues are often used as basic models that are fit to
the data obtained from mechanical measurements of living
cells.2,25,33 A more advanced model of this type includes
a two-compartment model comprised of an elastic corti-
cal membrane and a viscous or viscoelastic cytoplasm.12,40

Although useful for quantitating cell viscoelastic parame-
ters, these models do not take into account the existence
of the internal CSK and its known role in bearing both
static24,25,30,34,36 and dynamic2,11,13,22,26 mechanical loads
within cells. Recently, Ca˜nadaset al.4 used a tensegrity
structure with viscoelastic elements as a model of the CSK
to analyze creep behavior of cells. We also previously used
a stress-supported cable network model of the actin CSK,
a structure organized upon similar principles as tensegrity,
to analyze the effect of cell contractility upon elastic and
frictional properties of the cell.30 These models, however,
only captured a limited number of features observed in cells,
presumably because of oversimplification of modeling as-
sumptions. In particular, these models failed to incorporate

intermediate filaments that are known to play an important
role in cell mechanics.37

Recent experimental studies revealed two fundamental,
dynamic mechanical behaviors of cultured cells. First, at a
given frequency of loading, both the elastic (storage) modu-
lus (G′) and frictional (loss) modulus (G′′) increase approx-
imately linearly with increasing contractile prestress in the
CSK, withG′ exhibiting a greater dependence.30 Second, at
a given prestress, bothG′ andG′′ increase with increasing
frequency according to a weak power-law1,11,13 (power-law
exponent∼0.2). In the case ofG′, this power-law depen-
dence extends over five decades of frequency11 (10−2 to
103 Hz). However, at very low frequencies<10−2 Hz, G′

has been reported to assume a constant value in certain
cells.13 G′′ increases according to the same power-law up to
10 Hz, but at higher frequencies the power-law dependence
increases and approaches unity at very high frequency, con-
sistent with Newtonian viscous behavior.1,11 In this study,
we explored whether a computational model of tensegrity
structures composed of simple viscoelastic members that
represent intermediate filaments, as well as microfilaments
and microtubules, could predict these dynamic behaviors
that living cells exhibit during oscillatory loading.

MODEL

The tensegrity structure used in our model (Fig. 1) is
composed of 3 struts,Ai Ci (i = 1, 2, 3) that attach to a fixed
base through frictionless ball and socket joints; 3 struts,
Bi Di , that connect only to tendons; and 36 tendons that
connect the end points of the struts. Of the 36 tendons, 12
that represent intermediate filaments are connected together
to a point of negligible mass situated at the center of the
structure (analogous to the nucleus of the cell), whereas the
other 24 tendons that correspond to actin filaments connect
to the end points of the struts (Fig. 1). The three tendons that
connect the points of the base (A1, A2, A3) are not impor-
tant in our mathematical study because they connect fixed
points, and thus, they do not influence the statics or dynam-
ics of the structure. We call the other 33 tendons, working
tendons. All struts, which represent microtubules or other
compression-bearing elements of the CSK, are of identi-
cal length,L, in the model. The base triangleA1A2A3 is
equilateral with a side lengthL

√
3/8 (Fig. 1). It is assumed

that the struts are rigid, of negligible thickness, and with
negligible inertial properties. The tendons are assumed to
be viscoelastic Voigt elements consisting of a linear elastic
spring in parallel with a linear viscous damper. The consti-
tutive equation of a tendon is

T = EA

(
l

l0
− 1

)
+ cl̇ , (1)

whereT is the force,EA is the stiffness (defined as the
product between the longitudinal modulus of elasticity,E,
and the cross-sectional area,A, of a tendon),c > 0 is the
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FIGURE 1. A spherical tensegrity structure with intermediate filaments used to generate the computational tensegrity model. The
thin tendons represent microfilaments (black lines) and intermediate filaments (red lines); the thick gray struts indicate microtubules.
Anchoring points to the substrate (blue) are indicated by the black triangles ( A1, A2, and A3).

damping coefficient,l andl0 are the length and the resting
length of the tendon, respectively, and the dot indicates the
material time derivative.

For mathematical modeling, we introduced an iner-
tial system of reference defined as follows: it is a right-
handed system of orthonormal base vectors (b1, b2, b3)
centered at the geometrical center of the base triangle,
A1A2A3, with b1 parallel to A1A3 and pointing toward
A3, andb3 perpendicular to the fixed planeA1A2A3. The
configuration of the structure is described by a set of
independent generalized coordinates defined as follows.
For eachAi Ci strut in Fig. 1, two angles are necessary
and sufficient to specify its position: the azimuth,αi 1,
and the declination,δi 1, defined as follows: the declina-
tion is the angle between a strut andb3, and the az-
imuth the angle made by the orthogonal projection of
the strut on A1A2A3 and b1. For each Bi Di strut in
Fig. 1 in addition to the azimuth (αi 2) and declination
(δi 2) angles, the inertial Cartesian coordinates of its cen-
ter of mass (Xi , Yi , Zi ) are necessary. Finally, the point
(without mass) at the center of the structure is char-

acterized by its inertial Cartesian coordinates (X,Y, Z).
The vector of generalized coordinates (q) (24× 1),
obtained by assembling these independent generalized
coordinates, is

q = [δ11α11 δ21α21 δ31α31 X1 Y1 Z1 δ12α12

X2 Y2 Z2 δ22α22X3 Y3 Z3 δ32α32 X Y Z]T . (2)

Equations of Motion

The equations of motion of the model were derived using
the Lagrangean formulation. For this purpose, the potential
energy and the nonconservative generalized forces acting
on the structure were expressed in terms of the generalized
coordinates. In this model we consider that the inertial prop-
erties of the structure (e.g., masses, moments of inertia of
the struts) are negligible, hence the kinetic energy is 0. The
potential energy (V) due to elasticity of the tendons was
calculated using

V = 0.5
33∑
j=1

EAj

(
l j

l0 j
− 1

)2

, (3)
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whereEAj , l j , and l0 j are the stiffness, length, and rest-
ing lengths, respectively, of thej th working tendon. The
lengths of the tendons,l j , were expressed in terms of the
generalized coordinates, using simple geometry to derive
the coordinates of the nodes of the structure and symbolic
computational software (Maple) to compute the distances
between these nodes.

The nonconservative forces acting on the structure
(damping in the tendons, external forces on struts) result
in a set of nonconservative generalized forces which were
expressed using the principle of virtual work as:

Qj =
7∑

n=1

(
FT

n

∂ ṙn

∂q̇j
+M T

n

∂Ωn

∂q̇j

)
, (4)

whereQj is the nonconservative generalized force associ-
ated with the j th generalized coordinate,qj . VectorsFn,
Mn are the resultant force and moment, respectively, acting
on thenth rigid body (including the point mass),ṙn andΩn

are the velocity of the center of mass and angular velocity
of thenth rigid body, respectively.

Lagrange equations are

∂V

∂qj
= Qj , ( j = 1, . . . ,24). (5)

Applied to this holonomic system they yielded

A(q)T(q)+ C(q)q̇+ H(q)F = 0, (6)

where matrix functionA(q) (24× 33) is the equilibrium
matrix, whose elements are:

A i j = ∂l j

∂qi
(i = 1, . . . ,24, j = 1, . . . ,33). (7)

Vector functionT(q) (33×1) indicates tensions in the work-
ing tendons. Matrix functionC(q) (24× 24) is the damping
matrix, which is given as

C(q) =
33∑
j=1

cj C j (q), (8)

whereC j (q) are matrices which depend on the geometric
properties of the structure andcj are damping coefficients
of the working tendons. Matrix functionH(q) is called the
disturbance matrix, of size (24× N), whereN is the number
of external forces and torques applied to the structure and
assembled in the vectorF (N×1).

The derivation of these equations was carried out using
symbolic computation under Maple. The resulting equa-
tions are too complicated to be given here. For frequency
response calculations, the linearized equations of motion
were derived from Eq. (6). Their derivation required the in-
troduction of a reference solution of Eq. (6). In this study, we
considered that the reference solution is a special equilib-
rium configuration, called a prestressable configuration. Its
definition requires a brief review of a fundamental property
of tensegrity structures—the prestressability property.

Prestressability of Tensegrity Structures

One of the most important properties of tensegrity struc-
tures is their prestressability. It represents their capability
to attain equilibrium in the absence of external forces and
torques when all tensile members (e.g., tendons) are in
tension. These equilibrium configurations are called pre-
stressable configurations and the corresponding mathemat-
ical conditions, the prestressability conditions, are given as:

A(q)T(q) = 0, Tj > 0 ( j = 1, . . . ,33), (9)

whereTj is the tension in thej th working tendon.32

In this study, we considered a spherical prestressable
configuration: all nodal points of the structure lie on the
surface of the sphere (Fig. 1). Letq0 denote the vector of the
corresponding generalized coordinates (see Appendix). The
tensions in the tendons were determined by solving equation
A(q0)T(q0) = 0. Because the number of columns ofA(q0)
(33) is larger than the number of rows (24) this equation
has many solutions; for the present study we considered
the solution for an isotropic structure in which the tendons
in the 12 intermediate filaments are all equal. The tensions
in all tendons are completely characterized, as shown in
Appendix up to an arbitrary, positive, multiplicative scalar
called the pretension coefficient or prestress,P > 0:

T(q0) = PT0. (10)

The value ofT0 is given in Appendix. It can be seen that
all tensions are positive, as required in a prestressable con-
figuration. Note thatP depends on a selection of the resting
lengthsl0 j ( j = 1, 2, . . . ,33) of the working tendons. Since
these are linear elastic tendons,l0 j andP are related by the
following formula:

l0 j = l j (q0)EAj

T0 j P + EAj
( j = 1, . . . ,33), (11)

whereT0 j is the tension andl j (q0) is the length of thej th
tendon corresponding to the reference solution,q0.

Linearized Equations of Motion

Having derived the nonlinear equations of motion (Eq.
(6)) and determined a reference solution, we used the Taylor
series expansion of Eq. (6) aroundq0 to obtain the corre-
sponding linearized equations of motion. These are

C0 ˙̄q+ K0q̄+ H0F̄ = 0, (12)

whereq̄ is the perturbations vector (24× 1) of independent
generalized coordinates from their values at the reference
solution (̄q = q− q0) andF̄ is the vector (N × 1) of per-
turbations in the external forces and torques (F̄ = F− F0,
where, in this caseF0 = 0). MatricesC0, K0, andH0 are the
damping, stiffness, and disturbance matrices, respectively,
evaluated atq0 (see Appendix forH0). MatricesC0 and
K0 are too complicated to be given here, however, some
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insight into the stiffness matrix structure is necessary for
further analysis.

The stiffness matrix,K0, is linear in the prestress coeffi-
cient, P, and the material properties of the tendons,EAj :

K0 = PK P +
33∑
j=1

EAj K j . (13)

MatricesK P, K j (24× 24) depend on the geometric prop-
erties of the structure. For frequency response calculations,
an input and an output of the system have to be defined.
In our study, we consider that the structure is acted upon
only by an external, vertical, force,F1 = F1b3, applied at
the center of mass of strutB1D1 in Fig. 1. The magnitude
component of this force,F1, is the input to the system, and
it is assumed to be small enough such that the structure
undergoes small perturbations which justify the use of the
linearized model to analyze its dynamic behavior through
frequency response calculation.F1 varies sinusoidally in
time with the forcing frequencyω. The output is the cor-
responding vertical displacement in theb3-direction, at the
point of application,Z1. For the frequency response, the
linearized output equation, which relates the output pertur-
bation,z1 ≡ Z1− Z10 (whereZ10 is the value ofZ1 at the
reference solution, as shown in Appendix) to the general-
ized coordinates perturbation,q̄, is

z1 = D0q̄, (14)

whereD0 is the output matrix (1× 24) (see Appendix).

Frequency Response of the Model

To compare model predictions with experimental data
relating to dynamic mechanical responses of cells, we trans-
ferred Eqs. (12) and (14) into the frequency domain. The
transfer function,J(ω, P), between the output perturba-
tion, z1, and the input perturbation,F1, was computed by
applying the Laplace transform to Eqs. (12) and (14). This
yielded the following equation:

z1(ω) = −D0[K0(P)+ iωC0]−1H0F1(ω)

= J(ω, P)F1(ω), (15)

wherei is the imaginary unit. The elastic (G′) and frictional
(G′′) moduli are obtained from the following relationship:

J−1(ω, P) = G′(ω, P)+ iG ′′(ω, P). (16)

Note thatG′ and G′′ are in the units of force/length. To
transform these units into more traditional units, force/area,
so that we can compare model predictions to experimental
data, we used the equivalent continuum approximation.27 In
this approximation the work of the external force on an in-
cremental extension per unit reference volume of the model
equals the work of applied stress on an incremental change
in corresponding strain (see Ref. 27 for more details). In

our model, this amounts to multiplication ofG′ andG′′ in
Eq. (16) with 0.5/L.

RESULTS

Qualitative Investigation of a Homogeneous
Tensegrity Structure

We first investigated a homogeneous tensegrity model
(Fig. 1) in which the material properties of all the elements
are the same. Our goal was to determine whether this model
that is commonly viewed as a static mechanical model could
also qualitatively predict the dynamic behavior of the struc-
ture. For simplicity we assumedad hocthat the stiffness
of all tendons and the damping coefficients were equal to
unity (cj = EAj ≡ 1), and that all struts were of unit length
(L = 1).

In this case, the model revealed that bothG′ and G′′

increase with increasing prestress for frequencies ranging
from 0 to 10 Hz range, withG′ exhibiting a greater depen-
dence on prestressP thanG′′ (Fig. 2). These dependences
are qualitatively similar to the ones observed in living cells
in terms of their linearity.30 Importantly, the frequency de-
pendences ofG′ and G′′ predicted by the model (Fig. 3)
are also in general agreement with data from experimental
studies with cultured mammalian cells1,11,13. G′ has steady
values at low frequencies (<1 Hz), but above 1 Hz it in-
creases approximately linearly with frequency on the log–
log scale (Fig. 3). This frequency dependence is also shifted
in the direction of increasing prestress (Fig. 2). In addi-
tion, G′′ exhibits an increasing dependence on frequency
which is nearly linear on a log–log scale and the frequency
dependence ofG′′ exhibits a much smaller sensitivity to
prestress than in the case ofG′ (Fig. 3). However, the

FIGURE 2. Model predictions of the elastic ( G′) and frictional
(G′′) moduli dependences on prestress for a homogeneous
tensegrity structure. Each curve corresponds to a different
frequency ( ω) equally distributed between 1 and 10 Hz.
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FIGURE 3. Model predictions of the elastic ( G′) and frictional
(G′′) moduli dependences with frequency ( ω) for a homoge-
neous tensegrity structure. Each curve corresponds to a differ-
ent prestress ( P) equally distributed between 500 and 4500 Pa.

dependence ofG′′ on frequency exhibits a log–log slope
of ∼1 over the entire frequency range (10−2 to 103 Hz).
Experimental measurements11 show that the slope of 1 is
attained only at very high frequencies (>103 Hz), and that
at lower frequencies this slope is an order of magnitude
smaller in living cells.11 It is noteworthy that our numer-
ous numerical simulations carried out for different types
of homogeneous tensegrity structures (e.g., various non-
spherical shapes, number of elements, modules, etc.) and
for different types of loading produced qualitatively similar
results to those shown in Figs. 2 and 3. Thus, we conclude
that homogeneous tensegrity models are capable of quali-
tatively matching these dynamic behaviors of living cells,
but they are limited in terms of their quantitative predic-
tions. Our numerical experiments also indicated that the
frequency responses were very robust with respect to vari-
ations in the geometrical and material properties of the
model. The moduliG′ and G′′ did not exhibit dramatic
changes when the model parameters were slightly varied;
for example variations of 10% in the model parameters did
not result in larger than 8% variations in the moduli, indicat-
ing that the observed properties are generic and not singular
phenomena.

Heterogeneous Tensegrity Structures

To further assess the quantitative capabilities of our for-
mulation of the tensegrity model, we relaxed the homogene-
ity restriction and allowed the stiffness to vary between
tendons. However the damping coefficient of the tendons
and the length of the struts were still maintained uniform
throughout the structure. Parameter values were obtained by
using Matlab to numerically solve a nonlinear constrained

FIGURE 4. Comparison between model predictions of elastic
(G′) and frictional ( G′′) moduli dependence on prestress for
a heterogeneous tensegrity structure and the experimental re-
sults from human airway smooth muscle cells at 0.1 Hz. Circles
represent experimental data replotted from Stamenovi ´ c et al. 30;
lines indicate data generated by the tensegrity model.

optimization problem in which the Euclidean norm of the er-
ror between the experimental data and the results generated
by the tensegrity model was minimized. The optimization
parameters were the stiffnesses of the tendons, the prestress,
the damping coefficient of the tendons, and the length of the
struts.

Multiple solutions of the optimization problem were ob-
tained. For example, when optimization procedure was used
to fit the data for theG′ andG′′ versus prestress relation-
ships at the frequency of 0.1 Hz,30 for certain parameter
values (e.g.,c = 110, L = 1.67, tendon stiffness varying
between 10−6 and 1089), the model provided a very good
correspondence to the experimental data (Fig. 4). When the
relationships forG′ andG′′ versus frequency were exam-
ined over a 5 log frequency range (10−2 to 103 Hz), the
model also provided excellent correspondence to experi-
mental data11 for parameter values ofL = 0.13, damping
coefficient ofc = 0.23, prestress ofP = 0.01, and tendon
stiffness varying from 10−6 to 151 (Fig. 5). Our numerical
simulations show that this wide distribution of the material
properties is needed to match the experimental data and to
simulate the wide distribution of time constants observed
in living cells. The heterogeneous model also proved to
be very robust with respect to variations inL, EA, andc.
When these parameters values were slightly (∼10%) modi-
fied from their nominal values, variations ofG′andG′′ were
hardly noticeable.

DISCUSSION

Past attempts to model cell dynamic behavior have re-
lied on ad hocmodels (e.g., spring-dashpot models) that
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FIGURE 5. Comparison between model predictions of elastic ( G′) and frictional ( G′′) moduli dependence on frequency ( ω) for a het-
erogeneous tensegrity structure and experimental results from human airway smooth muscle cells. Circles represent experimental
data replotted from Fabry et al. 11; lines indicate data generated by the tensegrity model.

are developed to fit data from specific experiments, rather
than being based on knowledge of cell structure and the
importance of the CSK for maintaining cell shape stabil-
ity. Past formulations of the cellular tensegrity model that
are based on recent insights into CSK organization have
proved effective at predicting various static mechanical be-
haviors of living cells.17 However, if this model embod-
ies key features of mammalian cell mechanics, then it also
should be able to predict dynamic mechanical behaviors in
cells. In this study, we investigated whether the tensegrity
model could also describe dynamic rheological behavior of
cells. We assumed that the constitutive elements are simple,
viscoelastic Voigt elements in order to find out whether a
more complex behavior, that is consistent with observations
in living cells, would emerge from this simple tensegrity
model. We obtained results that are, in general, consistent
with cell oscillatory behavior: the model provided consis-
tent qualitative correspondence to the observed dependence
of elastic and frictional moduli on both CSK prestress and
the forcing frequency. However, the model failed to pro-

vide good quantitative correspondence to the experimental
data under the assumption of homogeneous properties of
its constituents. A good quantitative correspondence to the
experimental data could be obtained only in the nonhomo-
geneous model in which individual cable properties differed
over many orders of magnitude. Such a high variability of
properties is not realistic in living cells, however. Thus,
taken together, our results indicate that a simple tenseg-
rity model may be used for qualitative description of cell
dynamic behavior, but that it is limited in its current form
as a quantitative model. We next critically evaluate major
findings and limitations of our model.

The approximately linear dependence ofG′ on prestress
observed in this study (Figs. 2 and 4) and past experiments
with cultured cells,30,36 has been generally attributed to var-
ious stress-supported mechanisms, including tensegrity, in
the past.28,30 However, this is the first model to effectively
predict the observed dependence ofG′′ on prestress. In the
following discussion we analyze the potential mechanisms
that can explain this dependence.
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The mechanisms by which stress-supported structures
develop mechanical stresses to resist distortion of their
shape involve changes in spacing, orientation, and length of
their components.30,31 In a purely elastic tensegrity struc-
ture that is not affected by damping and is subjected to
sinusoidal external excitations, all these geometric changes
are in phase andG′′ = 0, as long as the structural response
is approximately linear and resonance does not occur. How-
ever, in a tensegrity structure affected by linear damping,
as is the case in this study, these changes may not all be in
phase with the applied load or with each other. Since these
changes depend on the prestress, the corresponding phase
lags, and henceG′′ also depend on the prestress.

A key assumption in our model is that damping enters
the system only through the tendons, which are linearly vis-
coelastic Voigt elements, yielding a linearly damped system.
The simple fact that the elements are viscoelastic does not
necessarily imply thatG′′ is affected. Indeed, the system
might include nonlinear viscoelastic damping and yetG′′

might be 0. For example, if instead of the linear dashpots
in the Voigt tendons we consider nonlinear dashpots which
conform to a power-law,̇l β , whereβ > 1, the constitutive
equation of each tendon, Eq. (1), becomes

T = EA

(
l

l0
− 1

)
+ cl̇ β,

and the resulting linear system has a zero damping matrix,
C0 = 0, yieldingG′′ = 0. This shows that rheological non-
linearities of a simple power-law type in the cables (CSK
filaments) cannot explain the observed dependence ofG′′

on prestress. In the case when 0< β < 1, linearization is
not theoretically possible, however, in the limit, approxi-
mation methods also lead toG′′ = 0. Thus, tendons must
have a linear viscous damping (β = 1) in order thatG′′ > 0.
This, in turn, suggests that CSK filaments may similarly ex-
hibit linear viscoelastic behavior in living cells in the first
approximation (i.e., if the cell is subjected to small pertur-
bations). There are no experimental data on the viscoelas-
ticity of isolated actin filament, microtubule, or intermedi-
ate filament polymers. However, viscoelastic behavior has
been observed duringin vitro rheological measurements of
reconstituted gels and suspensions containing these CSK
polymers.3,19,21 Some of these studies suggest that suspen-
sions of actin and microtubules may conform to a weak
power-law.3 It is noteworthy that static measurements of
elastic properties of isolated actin filaments indicate that
they behave as linear (i.e., Hookean) springs in tension; the
stiffness of these filaments remains constant over a wide
range of applied tensile strains,20 thus supporting our as-
sumption of the elastic linearity of tendon elements in the
tensegrity model.

One potential limitation of our model is that we did not
consider the influence of cytoplasmic viscosity. However,
the reality is that experiments with living cells show that the
contribution of cytoplasmic viscosity is small at frequencies

less than 10 Hz.11 Moreover, cytoplasmic viscosity alone
cannot explain the observed dependency ofG′′ on prestress
because in general viscosity does not depend on the pres-
sure in the liquid. Past studies also have demonstrated that
cells exhibit similar mechanical behavior after membrane
integrity is compromised, and hence even after cytoplasmic
fluid contents are released.35

Another assumption in this study was that the CSK
struts (e.g., microtubules) are rigid. This assumption has
been introduced to obtain simpler equations of motion.
The reality is that microtubules are known to buckle un-
der compression,36,38 and their flexibility contributes to cell
deformability.5,30 Moreover, tensegrity models that incor-
porate semiflexible struts are much more effective at pre-
dicting cell static behaviors than models with rigid struts.5,6

Thus, replacement of the rigid struts with elastic elements in
this model in the future may further strengthen our model.

Our numerous simulations with various homogeneous
tensegrity structures could not predict the observed fre-
quency dependence ofG′′ at low frequency. Specifically,
the slope predicted by the homogeneous tensegrity model
was an order of magnitude higher than that measured in
experiments with living cells. Again, the reality is that cells
are not homogeneous structures, in fact, they characteris-
tically exhibit anisotropic structures within their CSK that
result in heterogeneous force transmission throughout the
cell.14,15 When we relaxed the homogeneity assumption and
allowed for the material properties of the tendons to differ
as they do in living cells, the model led to effective quan-
titative, as well as qualitative, predictions. We note that the
quantitative predictions were obtained with structures with
a very high degree of heterogeneity (i.e., there was a wide
range of tendons stiffnesses) which is not realistic in liv-
ing cells. However one may obtain quantitative predictions
with more compact distributions of the material properties,
because the optimization problem to be solved in order to
match the experimental data is highly nonlinear and has
multiple solutions.

Several remarks are in order regarding the importance
of intermediate filaments (i.e., the radial cables in Fig. 1)
which were absent from the past tensegrity model used to
analyze creep behavior of the cell.4 If intermediate fila-
ments are removed from the homogeneous tensegrity struc-
ture, theG′′ versus frequency dependence exhibits a peak.
Moreover, similar results were obtained for various refer-
ence configurations (e.g., for cylindrical solutions in which
the nodal points of the structure lie on the surface of a rect-
angular cylinder) or for more complex structures composed
of more elements. However, the dependences ofG′′ on pre-
stress and ofG′ on the frequency were not dramatically
affected by removing the intermediate filaments. This sug-
gests the importance of including the radial elements that
mimic the intermediate filaments into the tensegrity model.
Several experimental facts are consistent with this obser-
vation. For example, disruption of intermediate filaments
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caused only minor changes in the dependencies ofG′ and
G′′ on prestress.30 This, in turn, led to the conclusion that
intermediate filaments are not important for determining the
dynamic behavior of cells.30 However the intermediate fila-
ments are known sources of nonlinear elastic behavior.19,21

Hence further improvement of the model requires a nonlin-
ear, non-Hookean model, for the intermediate filaments to
be taken into consideration.

Another limitation of our model is the fact that it does
not include mechanical contributions from other struc-
tures, such as membranes or the nucleus, or from dy-
namic changes in filament structure (e.g., polymeriza-
tion/depolymerization, cross-link turnover). Several studies
indicate that the contribution of membrane forces to resist-
ing cell deformation is minimal.35 For small deformations
of the cell surface, the central nucleus also likely does not
contribute significantly to cell mechanics; however, as the
nucleus appears to be stiffer than the surrounding CSK,
it may significantly impact mechanical responses to larger
deformations.23 Thus, incorporation of a nucleus with rel-
evant material properties into a future embodiment of the
tensegrity model presented here could strengthen the model.

Another potential limitation is the contribution of dy-
namic changes in CSK filament polymerization that may
proceed on the order of seconds to minutes. However, the
reality is that most major load-bearing structures in the CSK
are large bundles composed of multiple filaments oriented in
parallel (e.g., actin stress fibers, intermediate filament bun-
dles). The rapid dynamics of these filaments observed in ex-
periments with fluorescently labeled CSK monomers does
not correspond to complete disruption of the CSK bundle or
loss of its mechanical integrity, because it is only the exter-
nal filaments at periphery of the bundle that undergo disas-
sembly and reassembly. For this reason, the core filaments
of actin stress fibers that connect to integrins within focal
adhesions can maintain mechanical continuity between the
cytoskeleton and extracellular matrix for periods of 15 min
or more, even though adhesive contacts along the periph-
ery of the same focal adhesion can disassemble (and re-
assemble) within seconds to minutes when mechanically
stressed.7 In the case of microtubules, individual filaments
can either depolymerize or polymerize (shorten or lengthen)
over a period of minutes. However, this usually only relates
to a small subpopulation of these filaments, and the net
amount of tubulin polymer (strut) remains constant in the
cell.

Finally, we address the question of how important is the
linearization process used in the mathematical calculations
and how realistic is the assumption that the cell’s behavior
is largely linear during the types of experiments we describe
here. A nonlinear system’s dynamics is very complex and, in
response to a sinusoidal excitation, the system might exhibit
phenomena which are not captured by its linear approxima-
tion (e.g., subharmonics, beats, jumps, bifurcations, chaotic
dynamics). None of these phenomena have been reported in

the experimental papers to which our computational work
has been compared.11,13,31 Rather the behavior of the cell
types used in these experiments, which employed different
measurement techniques, appeared to be linear.

In summary, our results show that a tensegrity model of
the CSK that incorporates a prestressed network of inter-
connected structural members that correspond to microfil-
aments, microtubules, and intermediate filaments can ef-
fectively predict dynamic mechanical properties of living
mammalian cells. However, this model cannot provide good
quantitative predictions of the cell behavior unless a highly
nonhomogeneous distribution of structural element proper-
ties, which is not very realistic in the cell, is assumed. This,
in turn, suggests that the simple tensegrity model described
here is not sufficient for describing all facets of cellular dy-
namic behavior. Nevertheless, the model still can be greatly
improved in a number of ways. In particular, future mod-
els should explore the effects of incorporating compression
elements that are semiflexible, rather than rigid. They also
should better convey the anisotropy, multimodularity, and
heterogeneity of the cytoskeleton observed in living cells.17

Furthermore, molecular dynamics of cytoskeletal filaments
needs to be incorporated into the tensegrity model in order
to obtain a more realistic description of the cell dynamic
behavior. Despite its limitations, this highly simplified ar-
chitecture apparently embodies the fundamental features of
the cell mechanics, such as the effect of the prestress that
governs the mechanical behavior of the cell.
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APPENDIX

The generalized coordinates at the reference solutions
used in this paper can be parameterized by two angles,α

andδ, being given by

q0 = [δ α δ α + 240δ α + 120X10 Y10 Z10 δ α + 120

X20 Y20 Z20 δ α X30 Y30 Z30 δ α + 240X0 Y0 Z0]T ,

where

X10 = −L

√
6

8
+ L

4
sinδ cosα + L

√
3

4
sinδ sinα,

Y10 = L

√
2

8
+ L

4
sinα sinδ − L

√
3

4
sinδ cosα,

X20 = L

√
6

8
− L

2
sinδ cosα,

Y20 = L

√
2

8
− L

2
sinα sinδ,

X30 = L

4
sinδ cosα − L

√
3

4
sinα sinδ,
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Y30 = −L

√
2

4
+ L

4
sinα sinδ + L

√
3

4
sinδ cosα,

Z10 = Z20 = Z30 = 3

2
L cosδ − h,

X0 = Y0 = 0, Z0 = L cosδ − h

2
,

with h given by

h = L

cosδ

[
cos 2δ +

√
2

2
sinδ cos(α − 30)

]
.

In this paper, we consideredα = 60◦, δ = 54◦.
For the characterization of the vector of basis tensions,

T0, the set of 33 active tendons is divided in five classes
as follows. The intermediate filaments (I) class, which con-
sists of 12 tendons connected to the center of the sphere.
The saddle (S) tendons class consists of the six tendons
connecting theB1, B2, B3,C1,C2, andC3 points in Fig. 1.
The top (T) tendons class consists of the three tendons con-
necting pointsD1, D2, andD3. The diagonal (D) tendons
class consists of the following six tendons:A1B1, A2B2,
A3B3, D1C3, D2C1, and D3C2. The vertical (V) tendons
class consists of the following six tendons:A1C3, A2C1,
A3C2, D1B3, D2B1, andD3B2.

At the reference solutions, the tensions in each class are
equal and the basis tensions have the following values:

TS
0 = 0.210,TV

0 = 0.219,TD
0 = 0.226,

TT
0 = 0.213,T I

0 = 0.022.

The matrixH0 is

H0 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]T

The output matrix is

D0 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]T .
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